September 1983 Revised September 2001 MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

# FAIRCHILD

SEMICONDUCTOR

# MM74HC589 8-Bit Shift Registers with Input Latches and 3-STATE Serial Output

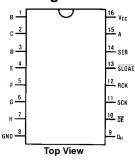
#### **General Description**

The MM74HC589 high speed shift register utilizes advanced silicon-gate CMOS technology to achieve the high noise immunity and low power consumption of standard CMOS integrated circuits, as well as the ability to drive 15 LS-TTL loads.

The MM74HC589 comes in a 16-pin package and consists of an 8-bit storage latch feeding a parallel-in, serial-out 8bit shift register. Data can also be entered serially the shift register through the SER pin. Both the storage register and shift register have positive-edge triggered clocks, RCK and SCK, respectively. SLOAD pin controls parallel LOAD or serial shift operations for the shift register. The shift register has a 3-STATE output to enable the wire-ORing of multiple devices on a serial bus.

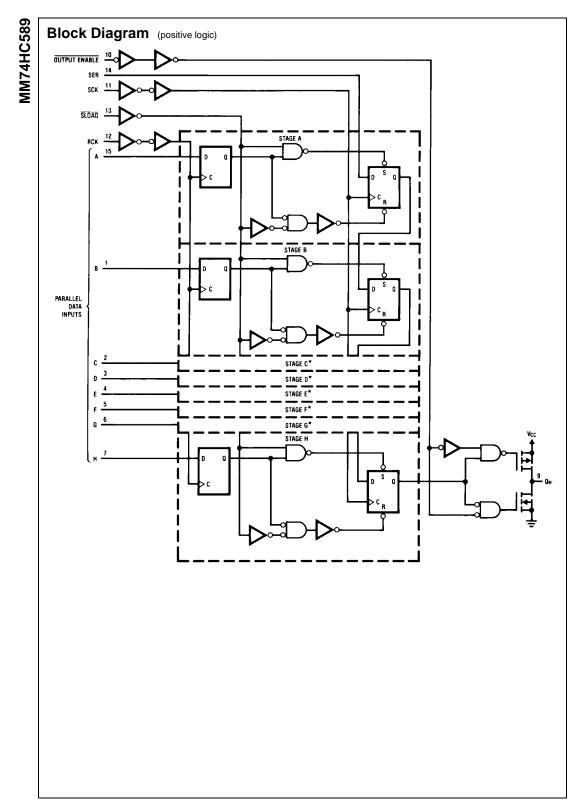
The 74HC logic family is speed, function, and pin-out compatible with the standard 74LS logic family. All inputs are protected from damage due to static discharge by internal diode clamps to  $\rm V_{CC}$  and ground.

#### Features


- 8-bit parallel storage register inputs
- Wide operating voltage range: 2V–6V
- Shift register has direct overriding load
- Guaranteed shift frequency. . . DC to 30 MHz
- Low quiescent current: 80 µA maximum (74HC Series)
- 3-STATE output for 'Wire-OR'

#### **Ordering Code:**

| Order Number | Package Number | Package Description                                                          |
|--------------|----------------|------------------------------------------------------------------------------|
| MM74HC589M   | M16A           | 16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow |
| MM74HC589SJ  | M16D           | 16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide                |
| MM74HC589N   | N16E           | 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide       |


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

#### **Connection Diagram**



#### **Truth Table**

| RCK    | SCK | SLOAD | OE | Function                           |
|--------|-----|-------|----|------------------------------------|
| Х      | Х   | х     | Н  | Q <sub>H</sub> in Hi-Z State       |
| Х      | Х   | Х     | L  | Q <sub>H</sub> is enabled          |
| Ŷ      | Х   | Х     | Х  | Data loaded into input latches     |
| Ŷ      | Х   | L     | Х  | Data loaded into shift register    |
|        |     |       |    | from pins                          |
| H or L | Х   | L     | Х  | Data loaded from latches to        |
|        |     |       |    | shift register                     |
| Х      | Ŷ   | н     | Х  | Shift register is shifted. Data    |
|        |     |       |    | on SER pin is shifted in.          |
| Ŷ      | Ŷ   | Н     | Х  | Data is shifted in shift register, |
|        |     |       |    | and data is loaded into latches    |



www.fairchildsemi.com

2

#### Absolute Maximum Ratings(Note 1)

# Recommended Operating Conditions

| (Note 2)                                                 |                                   |
|----------------------------------------------------------|-----------------------------------|
| Supply Voltage (V <sub>CC</sub> )                        | -0.5 to +7.0V                     |
| DC Input Voltage (V <sub>IN</sub> )                      | –1.5 to $V_{CC}\text{+1.5V}$      |
| DC Output Voltage (V <sub>OUT</sub> )                    | –0.5 to $V_{CC}$ +0.5V            |
| Clamp Diode Current (I <sub>IK</sub> , I <sub>OK</sub> ) | ±20 mA                            |
| DC Output Current, per pin (I <sub>OUT</sub> )           | ±25 mA                            |
| DC $V_{CC}$ or GND Current, per pin (I <sub>CC</sub> )   | ±50 mA                            |
| Storage Temperature Range (T <sub>STG</sub> )            | $-65^{\circ}C$ to $+150^{\circ}C$ |
| Power Dissipation (P <sub>D</sub> )                      |                                   |
| (Note 3)                                                 | 600 mW                            |
| S.O. Package only                                        | 500 mW                            |
| Lead Temperature (T <sub>L</sub> )                       |                                   |
| (Soldering 10 seconds)                                   | 260°C                             |
|                                                          |                                   |

|                                                                                | Min       | Max             | Units  |
|--------------------------------------------------------------------------------|-----------|-----------------|--------|
| Supply Voltage (V <sub>CC</sub> )                                              | 2         | 6               | V      |
| DC Input or Output Voltage                                                     |           |                 |        |
| (V <sub>IN</sub> , V <sub>OUT</sub> )                                          | 0         | V <sub>CC</sub> | V      |
| Operating Temperature Range $(T_A)$                                            | -40       | +85             | °C     |
| Input Rise or Fall Times                                                       |           |                 |        |
| $(t_r, t_f) V_{CC} = 2.0 V$                                                    |           | 1000            | ns     |
| $V_{CC} = 4.5V$                                                                |           | 500             | ns     |
| $V_{CC} = 6.0V$                                                                |           | 400             | ns     |
| <b>Note 1:</b> Absolute Maximum Ratings are those age to the device may occur. | values be | yond whic       | h dam- |

Note 2: Unless otherwise specified all voltages are referenced to ground.

Note 3: Power Dissipation temperature derating — plastic "N" package: – 12 mW/°C from 65°C to 85°C.

### DC Electrical Characteristics (Note 4)

| Symbol          | Parameter          | Conditions                           | v <sub>cc</sub> | $T_A = 25^{\circ}C$ |      | $T_A = -40$ to 85°C $T_A = -55$ to 125°C |       | Units |
|-----------------|--------------------|--------------------------------------|-----------------|---------------------|------|------------------------------------------|-------|-------|
| Symbol          | Falameter          | Conditions                           | •cc             | Тур                 |      | Guaranteed L                             | imits | Units |
| V <sub>IH</sub> | Minimum HIGH Level |                                      | 2.0V            |                     | 1.5  | 1.5                                      | 1.5   | V     |
|                 | Input Voltage      |                                      | 4.5V            |                     | 3.15 | 3.15                                     | 3.15  | V     |
|                 |                    |                                      | 6.0V            |                     | 4.2  | 4.2                                      | 4.2   | V     |
| VIL             | Maximum LOW Level  |                                      | 2.0V            |                     | 0.5  | 0.5                                      | 0.5   | V     |
|                 | Input Voltage      |                                      | 4.5V            |                     | 1.35 | 1.35                                     | 1.35  | V     |
|                 |                    |                                      | 6.0V            |                     | 1.8  | 1.8                                      | 1.8   | V     |
| V <sub>OH</sub> | Minimum HIGH Level | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                 |                     |      |                                          |       |       |
|                 | Output Voltage     | $ I_{OUT}  \le 20 \ \mu A$           | 2.0V            | 2.0                 | 1.9  | 1.9                                      | 1.9   | V     |
|                 |                    |                                      | 4.5V            | 4.5                 | 4.4  | 4.4                                      | 4.4   | V     |
|                 |                    |                                      | 6.0V            | 6.0                 | 5.9  | 5.9                                      | 5.9   | V     |
|                 |                    | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                 |                     |      |                                          |       |       |
|                 |                    | I <sub>OUT</sub>   ≤ 6.0 mA          | 4.5V            |                     | 3.98 | 3.84                                     | 3.7   | V     |
|                 |                    | I <sub>OUT</sub>   ≤ 7.8 mA          | 6.0V            |                     | 5.48 | 5.34                                     | 5.2   | V     |
| V <sub>OL</sub> | Maximum LOW Level  | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                 |                     |      |                                          |       |       |
|                 | Output Voltage     | $ I_{OUT}  \le 20 \ \mu A$           | 2.0V            | 0                   | 0.1  | 0.1                                      | 0.1   | V     |
|                 |                    |                                      | 4.5V            | 0                   | 0.1  | 0.1                                      | 0.1   | V     |
|                 |                    |                                      | 6.0V            | 0                   | 0.1  | 0.1                                      | 0.1   | V     |
|                 |                    | $V_{IN} = V_{IH} \text{ or } V_{IL}$ |                 |                     |      |                                          |       |       |
|                 |                    | I <sub>OUT</sub>   ≤ 6.0 mA          | 4.5V            |                     | 0.26 | 0.33                                     | 0.4   | V     |
|                 |                    | $ I_{OUT}  \le 7.8 \text{ mA}$       | 6.0V            |                     | 0.26 | 0.33                                     | 0.4   | V     |
| I <sub>IN</sub> | Maximum Input      | $V_{IN} = V_{CC}$ or GND             | 6.0V            |                     | ±0.1 | ±1.0                                     | ±1.0  | μΑ    |
|                 | Current            |                                      |                 |                     |      |                                          |       |       |
| I <sub>CC</sub> | Maximum Quiescent  | $V_{IN} = V_{CC}$ or GND             | 6.0V            |                     | 8.0  | 80                                       | 160   | μA    |
|                 | Supply Current     | $I_{OUT} = 0 \ \mu A$                |                 |                     |      |                                          |       |       |
| l <sub>oz</sub> | Maximum 3-STATE    | Output in High                       | 6.0V            |                     | ±0.5 | ±5.0                                     | ±10.0 | μA    |
|                 | Leakage Current    | Impedance State                      |                 |                     |      |                                          |       |       |
|                 |                    | $V_{IN} = V_{IL} \text{ or } V_{IH}$ |                 |                     |      |                                          |       |       |
|                 |                    | $V_{OUT} = V_{CC}$ or GND            |                 |                     |      |                                          |       |       |
|                 |                    | $\overline{OE} = V_{IH}$             |                 |                     |      |                                          |       |       |

Note 4: For a power supply of 5V  $\pm$ 10% the worst case output voltages (V<sub>OH</sub>, and V<sub>OL</sub>) occur for HC at 4.5V. Thus the 4.5V values should be used when designing with this supply. Worst case V<sub>IH</sub> and V<sub>IL</sub> occur at V<sub>CC</sub>=5.5V and 4.5V respectively. (The V<sub>IH</sub> value at 5.5V is 3.85V.) The worst case leakage current (I<sub>IN</sub>, I<sub>CC</sub>, and I<sub>OZ</sub>) occur for CMOS at the higher voltage and so the 6.0V values should be used.

**MM74HC589** 

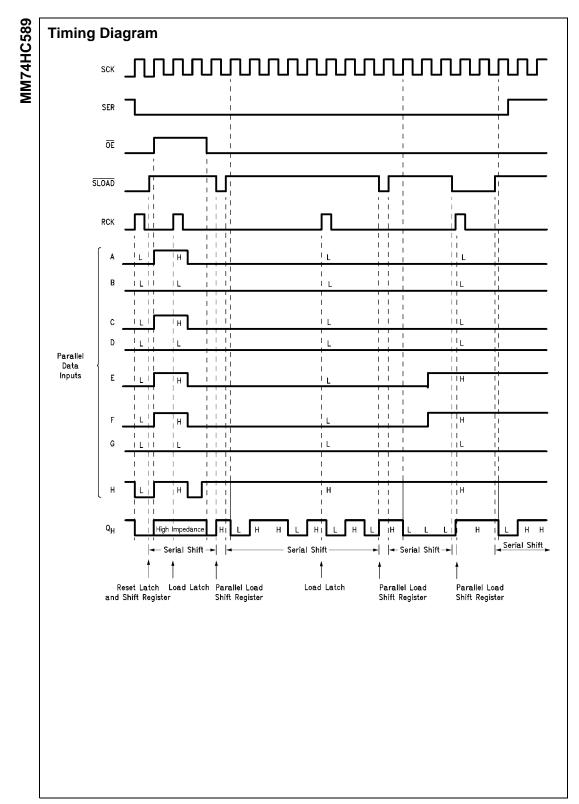
# **AC Electrical Characteristics**

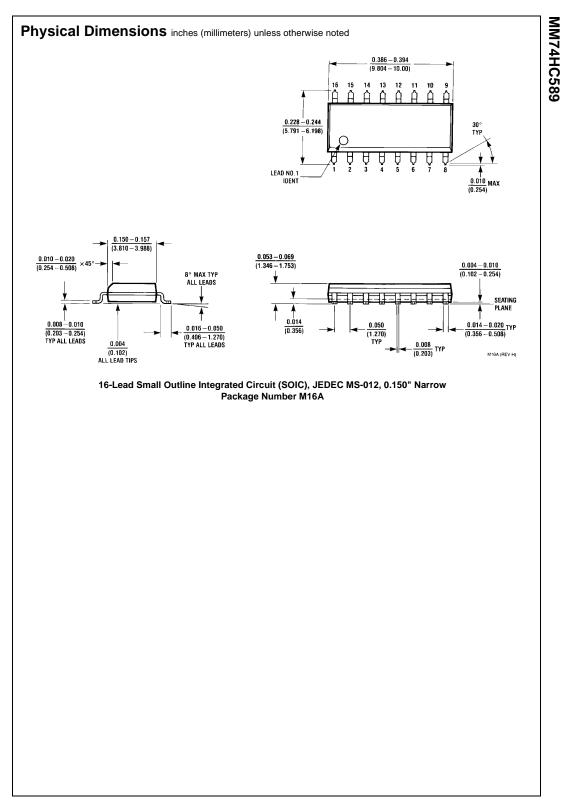
| Symbol                              | Parameter                                                                          | Conditions                                    | Тур | Guaranteed Limit | Units |
|-------------------------------------|------------------------------------------------------------------------------------|-----------------------------------------------|-----|------------------|-------|
| f <sub>MAX</sub>                    | Maximum Operating Frequency for SCK                                                |                                               | 50  | 30               | MHz   |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay from SCK to QH'                                          |                                               |     | 30               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay from $\overline{\text{SLOAD}}$ to $\text{Q}_{\text{H}'}$ |                                               |     | 30               | ns    |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation Delay from LCK to QH'                                          | SLOAD = logic "0"                             | 25  | 45               | ns    |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Output Enable Time                                                                 | $R_L = 1 k\Omega$                             | 18  | 28               | ns    |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Output Disable Time                                                                | $R_L = 1 \text{ k}\Omega, C_L = 5 \text{ pF}$ | 19  | 25               | ns    |
| t <sub>S</sub>                      | Minimum Setup Time from RCK to SCK                                                 |                                               | 10  | 20               | ns    |
| t <sub>S</sub>                      | Minimum Setup Time from SER to SCK                                                 |                                               | 10  | 20               | ns    |
| t <sub>S</sub>                      | Minimum Setup Time from Inputs A thru H to RCK                                     |                                               | 10  | 20               | ns    |
| t <sub>H</sub>                      | Minimum Hold Time                                                                  |                                               | 0   | 5                | ns    |
| t <sub>W</sub>                      | Minimum Pulse Width SCK, RCK, SLOAD                                                |                                               | 8   | 16               | ns    |

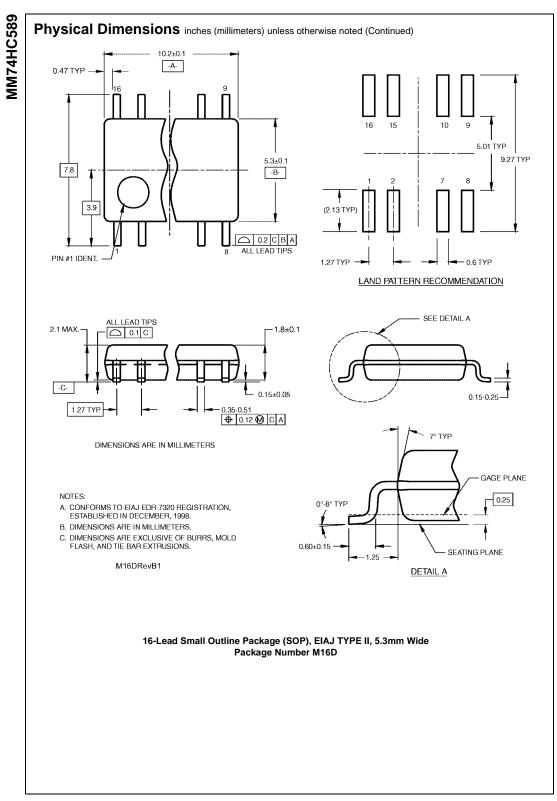
# **AC Electrical Characteristics**

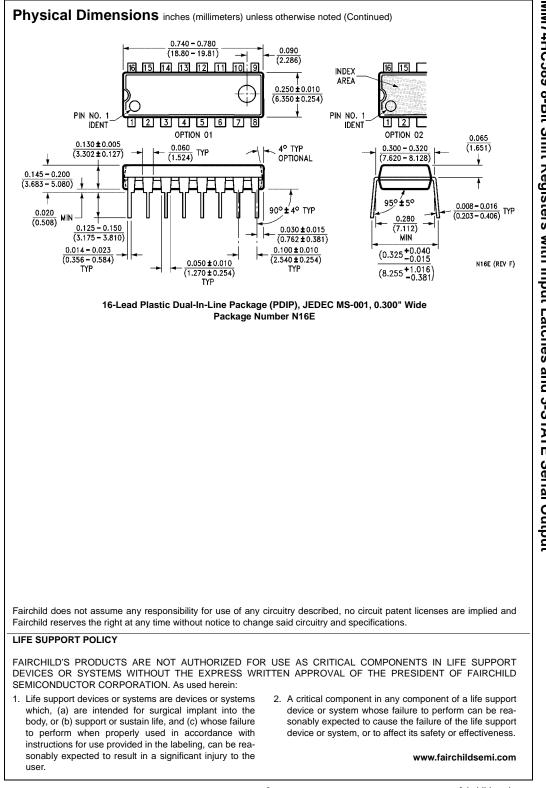
 $V_{CC}$  = 2.0–6V,  $C_L$  = 50 pF,  $t_r$  =  $t_f$  = 6 ns (unless otherwise specified)

| Symbol                              | Parameter                        | Conditions              | Vcc  | $T_A = 25^{\circ}C$ |                   | $T_{A}=-40$ to $85^{\circ}C$ | Units |     |
|-------------------------------------|----------------------------------|-------------------------|------|---------------------|-------------------|------------------------------|-------|-----|
| Symbol                              | Falameter                        | Conditions              | •00  | Тур                 | Guaranteed Limits |                              |       |     |
| f <sub>MAX</sub>                    | Maximum Operating                |                         | 2.0V |                     | 6                 | 4.8                          | 4     | MHz |
|                                     | Frequency for SCK                |                         | 4.5V |                     | 30                | 24                           | 20    | MHz |
|                                     |                                  |                         | 6.0V |                     | 35                | 28                           | 24    | MHz |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation              |                         | 2.0V | 62                  | 175               | 220                          | 265   | ns  |
|                                     | Delay from SCK or                |                         | 4.5V | 20                  | 35                | 44                           | 53    | ns  |
|                                     | SLOAD to Q <sub>H</sub>          |                         | 6.0V | 18                  | 30                | 37                           | 45    | ns  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation              |                         | 2.0V | 120                 | 225               | 280                          | 340   | ns  |
|                                     | Delay from SCK or                | C <sub>L</sub> = 150 pF | 4.5V | 31                  | 45                | 56                           | 68    | ns  |
|                                     | SLOAD to Q <sub>H</sub>          |                         | 6.0V | 28                  | 38                | 48                           | 58    | ns  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation              |                         | 2.0V | 80                  | 210               | 265                          | 315   | ns  |
|                                     | Delay from RCK to Q <sub>H</sub> |                         | 4.5V | 25                  | 42                | 53                           | 63    | ns  |
|                                     |                                  |                         | 6.0V | 21                  | 36                | 45                           | 54    | ns  |
| t <sub>PHL</sub> , t <sub>PLH</sub> | Maximum Propagation              |                         | 2.0V | 80                  | 210               | 265                          | 313   | ns  |
|                                     | Delay RCK to Q <sub>H</sub>      | C <sub>L</sub> = 150 pF | 4.5V | 25                  | 52                | 66                           | 77    | ns  |
|                                     |                                  |                         | 6.0V | 21                  | 44                | 56                           | 66    | ns  |
| t <sub>PZH</sub> , t <sub>PZL</sub> | Output Enable Time               | $R_L = 1 k\Omega$       | 2.0V | 70                  | 150               | 189                          | 224   | ns  |
|                                     |                                  | -                       | 4.5V | 22                  | 30                | 38                           | 45    | ns  |
|                                     |                                  |                         | 6.0V | 20                  | 26                | 32                           | 38    | ns  |
| t <sub>PHZ</sub> , t <sub>PLZ</sub> | Output Disable Time              | $R_L = 1 k\Omega$       | 2.0V | 70                  | 150               | 189                          | 224   | ns  |
|                                     |                                  |                         | 4.5V | 22                  | 30                | 38                           | 45    | ns  |
|                                     |                                  |                         | 6.0V | 20                  | 26                | 32                           | 38    | ns  |
| ts                                  | Minimum Setup Time               |                         | 2.0V |                     | 100               | 125                          | 150   | ns  |
| -                                   | from RCK to SCK                  |                         | 4.5V |                     | 20                | 25                           | 30    | ns  |
|                                     |                                  |                         | 6.0V |                     | 17                | 22                           | 25    | ns  |
| ts                                  | Minimum Setup Time               |                         | 2.0V |                     | 100               | 125                          | 150   | ns  |
| -                                   | from SER to SCK                  |                         | 4.5V |                     | 20                | 25                           | 30    | ns  |
|                                     |                                  |                         | 6.0V |                     | 17                | 22                           | 25    | ns  |
| ts                                  | Minimum Setup Time               |                         | 2.0V |                     | 100               | 125                          | 150   | ns  |
|                                     | from Inputs A thru H             |                         | 4.5V |                     | 20                | 25                           | 30    | ns  |
|                                     | to RCK                           |                         | 6.0V |                     | 17                | 22                           | 25    | ns  |
| t <sub>H</sub>                      | Minimum Hold Time                |                         | 2.0V | -5                  | 5                 | 5                            | 5     | ns  |
|                                     |                                  |                         | 4.5V | 0                   | 5                 | 5                            | 5     | ns  |
|                                     |                                  |                         | 6.0V | 1                   | 5                 | 5                            | 5     | ns  |
| t <sub>W</sub>                      | Minimum Pulse Width              |                         | 2.0V | 30                  | 80                | 100                          | 120   | ns  |
|                                     | SCK, RCK, SLOAD,                 |                         | 4.5V | 9                   | 16                | 20                           | 24    | ns  |
|                                     | SLOAD                            |                         | 6.0V | 8                   | 14                | 17                           | 20    | ns  |


www.fairchildsemi.com


I


## AC Electrical Characteristics (Continued)


| Symbol                              | Parameter                  | Conditions | v <sub>cc</sub> | $T_A = 25^{\circ}C$ |      | $T_A = -40$ to 85°C $T_A = -55$ to 125° |       | Units |
|-------------------------------------|----------------------------|------------|-----------------|---------------------|------|-----------------------------------------|-------|-------|
| Symbol                              | raiameter                  |            | •00             | Тур                 |      | Guaranteed L                            | imits | Units |
| t <sub>r</sub> , t <sub>f</sub>     | Maximum Input Rise and     |            | 2.0V            |                     | 1500 | 1500                                    | 1500  | ns    |
|                                     | Fall Time, Clock           |            | 4.5V            |                     | 500  | 500                                     | 500   | ns    |
|                                     |                            |            | 6.0V            |                     | 400  | 400                                     | 400   | ns    |
| t <sub>THL</sub> , t <sub>TLH</sub> | Maximum Output             |            | 2.0V            | 25                  | 60   | 75                                      | 90    | ns    |
|                                     | Rise and Fall Time         |            | 4.5V            | 6                   | 12   | 15                                      | 18    | ns    |
|                                     |                            |            | 6.0V            | 5                   | 10   | 12                                      | 15    | ns    |
| C <sub>PD</sub>                     | Power Dissipation          |            |                 | 87                  |      |                                         |       | pF    |
|                                     | Capacitance (Note 5)       |            |                 |                     |      |                                         |       |       |
| C <sub>IN</sub>                     | Maximum Input Capacitance  |            |                 | 5                   | 10   | 10                                      | 10    | pF    |
| C <sub>OUT</sub>                    | Maximum Output Capacitance |            |                 | 15                  | 20   | 20                                      | 20    | pF    |

Note 5:  $C_{PD}$  determines the no load dynamic power consumption,  $P_D = C_{PD} V_{CC}^2 f + I_{CC} V_{CC}$ , and the no load dynamic current consumption,  $I_S = C_{PD} V_{CC} sf + I_{CC}$ .









9